I hope this will be useful for you or anybody else in the reflector.
A = Latitude A
Z = Longitude A
B = Latitude B
Y = Longitude B
Enter East Longitude as negative and South Latitude as Negative
L = Z - Y
E = sin(A) * sin(B) + cos(A) * cos(B) * cos(L)
D = arccos(E)
K = D * M
C = ( sin(B) - sin(A) * E ) / ( cos(A) * sin(D) )
IF C > 1 THEN C = 1.
IF C < -1 THEN C = -1 GOTO XX
V = C
C= arccos(V)
XX
IF sin(L) < 0 THEN C = 360 - C.
Bearing is given by C(degrees) and distance by K(kms).
------
Arturo J. Gargarella
lu6etb@cvtci.com.ar
----------
> De: Lee Buller <k0wa@southwind.net>
> A: cq-contest@contesting.com
> Asunto: [CQ-Contest] Formula help
> Fecha: MiƩrcoles 31 de Diciembre de 1997 16:32
>
> Ok...here is a question for all you smart people.
>
> How do you figure bearing and distance from knowing two points on the
globe
> in latitude and longitude? There has got to be a formula for doing that,
> but it has been to many years since geometry...let alone spherical
geometry.
>
> Anyone have any information on this?
>
> Thanks
>
> lee Buller - Mathimatically challenged
> k0wa@southwind.net
>
>
>
> --
> CQ-Contest on WWW: http://www.contesting.com/_cq-contest/
> Administrative requests: cq-contest-REQUEST@contesting.com
--
CQ-Contest on WWW: http://www.contesting.com/_cq-contest/
Administrative requests: cq-contest-REQUEST@contesting.com
|